Substrate specificity and kinetic framework of a DNAzyme with an expanded chemical repertoire: a putative RNaseA mimic that catalyzes RNA hydrolysis independent of a divalent metal cation.

نویسندگان

  • Richard Ting
  • Jason M Thomas
  • Leonard Lermer
  • David M Perrin
چکیده

This work addresses the binding, cleavage and dissociation rates for the substrate and products of a synthetic RNaseA mimic that was combinatorially selected using chemically modified nucleoside triphosphates. This trans-cleaving DNAzyme, 9(25)-11t, catalyzes sequence-specific ribophosphodiester hydrolysis in the total absence of a divalent metal cation, and in low ionic strength at pH 7.5 and in the presence of EDTA. It is the first such sequence capable of multiple turnover. 9(25)-11t consists of 31 bases, 18 of which form a catalytic domain containing 4 imidazole and 6 allylamino modified nucleotides. This sequence cleaves the 15 nt long substrate, S1, at one embedded ribocytosine at the eighth position to give a 5'-product terminating in a 2',3'-phosphodiester and a 3'-product terminating in a 5'-OH. Under single turnover conditions at 24 degrees C, 9(25)-11t displays a maximum first-order rate constant, k(cat), of 0.037 min(-1) and a catalytic efficiency, k(cat)/K(m), of 5.3 x 10(5) M(-1) min(-1). The measured value of k(cat) under catalyst excess conditions agrees with the value of k(cat) observed for steady-state multiple turnover, implying that slow product release is not rate limiting with respect to multiple turnover. The substrate specificity of 9(25)-11t was gauged in terms of k(cat) values for substrate sequence variants. Base substitutions on the scissile ribose and at the two bases immediately downstream decrease k(cat) values by a factor of 4 to 250, indicating that 9(25)-11t displays significant sequence specificity despite the lack of an apparent Watson-Crick base-pairing scheme for recognition.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Sequence-specific cleavage of RNA in the absence of divalent metal ions by a DNAzyme incorporating imidazolyl and amino functionalities.

Two modified 2'-deoxynucleoside 5'-triphosphates have been used for the in vitro selection of a modified deoxyribozyme (DNAzyme) capable of the sequence-specific cleavage of a 12 nt RNA target in the absence of divalent metal ions. The modified nucleotides, a C5-imidazolyl-modified dUTP and 3-(aminopropynyl)-7-deaza-dATP were used in place of TTP and dATP during the selection and incorporate tw...

متن کامل

Substrate specificity and reaction kinetics of an X-motif ribozyme.

The X-motif is an in vitro-selected ribozyme that catalyzes RNA cleavage by an internal phosphoester transfer reaction. This ribozyme class is distinguished by the fact that it emerged as the dominant clone among at least 12 different classes of ribozymes when in vitro selection was conducted to favor the isolation of high-speed catalysts. We have examined the structural and kinetic properties ...

متن کامل

Catalytic mechanism of Escherichia coli ribonuclease III: kinetic and inhibitor evidence for the involvement of two magnesium ions in RNA phosphodiester hydrolysis

Escherichia coli ribonuclease III (RNase III; EC 3.1.24) is a double-stranded(ds)-RNA-specific endonuclease with key roles in diverse RNA maturation and decay pathways. E.coli RNase III is a member of a structurally distinct superfamily that includes Dicer, a central enzyme in the mechanism of RNA interference. E.coli RNase III requires a divalent metal ion for activity, with Mg2+ as the prefer...

متن کامل

MOLECULAR WEIGHT DETERMINATION AND METAL ION REQUIREMENT OF PHOSPHATIDATE PHOSPHOHYDROLASE PURIFIED FROM CYTOSOLIC FRACTION OF RAT LIVER

Phosphatidate phosphohydrolase (PAP) from cytosolic fraction of rat liver was purified to homogeneity having specific activity of 5.14 U/mg protein. An activity staining procedure was developed to determine molecular weight of the enzyme on polyacrylamide gel electrophoresis using Ferguson plot. Molecular Weight (M.W.) of the active PAP was 298 KDa. SDS-PAGE analysis showed a M.W. of 47 KDa for...

متن کامل

Characterization of Highly Efficient RNA‐Cleaving DNAzymes that Function at Acidic pH with No Divalent Metal‐Ion Cofactors

Here, we describe the characterization of new RNA-cleaving DNAzymes that showed the highest catalytic efficiency at pH 4.0 to 4.5, and were completely inactive at pH values higher than 5.0. Importantly, these DNAzymes did not require any divalent metal ion cofactors for catalysis. This clearly suggests that protonated nucleic bases are involved in the folding of the DNAzymes into catalytically ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Nucleic acids research

دوره 32 22  شماره 

صفحات  -

تاریخ انتشار 2004